Spectral Unmixing of Hyperspectral Remote Sensing Imagery via Preserving the Intrinsic Structure Invariant

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Rolling Guidance Based Scale-Aware Spatial Sparse Unmixing for Hyperspectral Remote Sensing Imagery

Ruyi Feng 1 ID , Yanfei Zhong 2,* ID , Lizhe Wang 1,* and Wenjuan Lin 3,* 1 School of Computer Science, China University of Geosciences (Wuhan), Wuhan 430074, China; [email protected] 2 State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China 3 School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, C...

متن کامل

Anomaly Detection from Hyperspectral Remote Sensing Imagery

Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) da...

متن کامل

overlap-based feature weighting: the feature extraction of hyperspectral remote sensing imagery

hyperspectral sensors provide a large number of spectral bands. this massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. we propose to use overlap-based feature weigh...

متن کامل

Spatial-spectral Classification Based on the Unsupervised Convolutional Sparse Auto-encoder for Hyperspectral Remote Sensing Imagery

Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature informati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2018

ISSN: 1424-8220

DOI: 10.3390/s18103528